Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.

نویسندگان

  • Alik S Widge
  • Malika Jeffries-El
  • Xinyan Cui
  • Carl F Lagenaur
  • Yoky Matsuoka
چکیده

There is continued interest in the development of conductive polymer coatings to improve the electrical properties and biocompatibility of electrodes for neural prostheses. We present here a new type of coating, based on mixed self-assembled monolayers (SAMs) of thiolated poly(alkylthiophene)s and functionalized alkanethiols. When assembled as a SAM on electrodes designed for in vitro electrophysiology, these polymers are able to significantly lower electrode impedance at 1 kHz. The same mixed formulation is able to promote the outgrowth of neurites from primary mouse cortical neurons when the alkanethiol component is functionalized with a neural cell adhesion molecule (NCAM) binding antibody. Atomic force microscopy of the SAMs shows that they exert their effect through the well-known mechanism of increasing electrode surface area. These new covalently bound films have the potential to be more robust and are more controllable in their composition than existing electrodeposited conductive polymer coatings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Assembled Monolayers of Polythiophene “Molecular Wires”: A New Electrode Technology for Neuro-Robotic Interfaces

This thesis presents the proof of concept of a new type of electrode for interfaces between living nervous systems and electronic devices (“neuro-robotic interfaces”). Such interfaces have long been pursued due to their high clinical and scientific value. However, progress has been hindered by inadequate performance of the implanted electrodes that bridge biological, ionbased electricity and an...

متن کامل

Conductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)

In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...

متن کامل

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

متن کامل

Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes

Coating microelectrodes with conductive polymer is widely recognized to decrease impedance and improve performance of implantable neural devices during recording and stimulation. A concern for wide-spread use of this approach is shelf-life, i.e., the electrochemical stability of the coated microelectrodes prior to use. In this work, we investigated the possibility of using the freeze-drying pro...

متن کامل

Progress on Fabric Electrodes Used in Biological Signal Acquisition

Due to its convenience, wear ability, affinity, continuously monitoring biological signal, etc., fabric electrodes used in biological signal acquisition attracted more and more interest from researchers around the world. Fabric electrode is a kind of intelligent textiles, and its application is very prominent in biological signal acquisition, supercapacitors and ECG (electric signal) monitoring...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2007